No. 50 (2022): A decade of changes in political communication.
Articles

Consumption and supply of news on social media. Case study of the #Maldonado network

Natalia Aruguete
Conicet y Universidad Nacional de Quilmes

Keywords

  • intercambio de noticias,
  • gatekeeping,
  • redes sociales,
  • polarización
  • news sharing,
  • gatekeeping,
  • social media,
  • polarization

How to Cite

Aruguete, N. . (2022). Consumption and supply of news on social media. Case study of the #Maldonado network. Más Poder Local, (50), 84-107. https://doi.org/10.56151/maspoderlocal.122

Abstract

Besieged by the current crisis in their business model, the media seek to increase the number of readers. These, in turn, increase driven by the news preferences of their virtual peers on social networks. In this media-digital scenario, the underlying question is: to what extent will the decisions of social network users affect the news relevance criteria taken by journalists and editors? In the current digital environment (Boczkowsky y Mitchelstein, 2022), the reader has ceased to be one more among other extra-media factors to permeate the editorial work in a significant way (Vu, 2014). Hence, the growing importance of news exchanges on social networks and the ways in which it impacts the routine practices of journalists and editors incorporates new questions into the process of information production and circulation. The main hypothesis is that there is a close and causal connection between online (news sharing) and the newsworthiness editorial decisions of digital media (gatekeeping).
This study takes as input Twitter conversation around the disappearance of Santiago Maldonado in Argentina, between August and October 2017, in order to integrate two theoretical perspectives —news sharing and gatekeeping— and thus answer key questions of the current relationship between media and public. Do the media create news tailored to users located at the ideological extremes of a virtual conversation or do they maintain a moderate editorial profile? If readers matter to the media, to what extent will more ideologically intense and politically engaged users promote greater polarization among media organizations? The results of this study show that a positive correlation between ideology (cognitive congruence) and the importance given to an issue (attention) will result, in the first place, in an overrepresentation of the preferences and narratives proposed by the most «partisan» users (which are, therefore, more dependent on cognitive congruence in information consumption). As a consequence, this will lead to heightened perceptions of polarization in the virtual conversation on the Twitter network.

Downloads

Download data is not yet available.

References

  1. Aruguete, N. y Calvo, E. (2018). «#Desiguales: Concentración mediática, redes sociales y política en la Argentina». En M. Dagatti y V. Sargentini (eds.): Los pueblos de la democracia. Política y medios en el siglo XXI. Buenos Aires: La Bicicleta Ediciones, pp. 297-310.
  2. Aruguete, N.; Calvo, E. y Ventura, T. (2021a): «News sharing, gatekeeping, and polarization: A study of the# Bolsonaro Election». Digital Journalism, 9(1): 1-23. DOI: 10.1080/21670811.2020.1852094
  3. Aruguete, N.; Calvo, E. y Ventura, T. (2021b): «News by popular demand: Ideological congruence, issue salience, and media reputation in news sharing». The International Journal of Press/Politics. DOI: 10.1177/19401612211057068
  4. Barberá, P. (2015): «Birds of the same feather tweet together: Bayesian ideal point estimation using Twitter data». Political Analysis, 23(1): 76-91. DOI: 10.1093/pan/mpu011
  5. Belair-Gagnon, V.; Zamith, R. y Holton, A. E. (2020): «Role orientations and audience metrics in newsrooms: An examination of journalistic perceptions and their drivers». Digital Journalism, 8(3): 347-366. DOI: 10.1080/21670811.2019.1709521
  6. Berry, J. A.; Ebner, D. y Cornelius, M. (2019): «White identity politics: linked fate and political participation». Politics, Groups, and Identities, 9(3): 519-537. DOI: 10.1080/21565503.2019.1615965
  7. Boczkowski, P. J. y Mitchelstein, E. (2022): El entorno digital. Breve manual para entender cómo vivimos, aprendemos, trabajamos y pasamos el tiempo libre hoy. Buenos Aires: Siglo XXI Editores.
  8. Boehmer, J. y Tandoc Jr., E. C. (2015): «Why we retweet: Factors influencing intentions to share sport news on Twitter». International Journal of Sport Communication, 8(2). DOI: 10.1123/IJSC.2015-0011
  9. Boyd, D.; Golder, S. y Lotan, G. (2010, January): «Tweet, tweet, retweet: Conversational aspects of retweeting on twitter». En 43rd Hawaii International Conference on System Sciences (pp. 1-10). IEEE.
  10. Bright, J. (2016): «The social news gap: How news reading and news sharing diverge». Journal of Communication, 66(3): 343-365. DOI: 10.1111/jcom.12232
  11. Calvo, E. y Aruguete, N. (2020): Fake news, trolls y otros encantos: Cómo funcionan (para bien y para mal) las redes sociales. Buenos Aires: Siglo XXI Editores.
  12. Csardi, G. y Nepusz, T. (2006): «The igraph software package for complex network research». InterJournal, Complex Systems, 1695(5): 1-9.
  13. Fruchterman, T. M. y Reingold, E. M. (1991): «Graph drawing by force directed placement». Software: Practice and Experience, 21(11): 1129-1164. DOI: 10.1002/spe.4380211102
  14. Hanusch, F. y Tandoc Jr., E. C. (2019): «Comments, analytics, and social media: The impact of audience feedback on journalists’ market orientation». Journalism, 20(6): 695-713. DOI: 10.1177/1464884917720305
  15. Kraft, P. W.; Lodge, M. y Taber, C. S. (2015): «Why people «don’t trust the evidence» motivated reasoning and scientific beliefs». The ANNALS of the American Academy of Political and Social Science, 658(1): 121-133. DOI: 10.1177/0002716214554758
  16. Kümpel, A. S. (2019): «The Issue Takes It All?» Digital Journalism, 7(2): 165-186. DOI: 10.1080/21670811.2018.1465831
  17. Kümpel, A. S.; Karnowski, V. y Keyling, T. (2015): «News sharing in social media: A review of current research on news sharing users, content, and networks». Social media + society, 1(2). DOI: 10.1177/2056305115610141
  18. Lee, E. J. y Tandoc Jr., E. C. (2017): «When news meets the audience: How audience feedback online affects news production and consumption». Human Communication Research, 43(4): 436-449. DOI: 10.1111/hcre.12123
  19. Mason, L. (2013): «The rise of uncivil agreement: Issue versus behavioral polarization in the American electorate». American Behavioral Scientist, 57(1): 140-159. DOI: 10.1177/0002764212463363
  20. Mason, L. (2018): Uncivil Agreement: How Politics Became Our Identity. Chicago: The University of Chicago Press.
  21. Retegui, L. (2020): «Métricas y cuantificación del rendimiento individual de los periodistas: Un estudio en el interior de una sala de redacción». Austral Comunicación, 9(1): 45-67. DOI: 10.26422/aucom.2020.0901.ret
  22. Shoemaker, P. J. y Reese, S. D. (2013): Mediating the message in the 21st century: A media sociology perspective. Londres: Routledge.
  23. Shoemaker, P. J.; Eichholz, M.; Kim, E. y Wrigley, B. (2001): «Individual and routine forces in gatekeeping». Journalism & Mass Communication Quarterly, 78(2): 233-246. DOI: 10.1177/107769900107800202
  24. Summers, E. (2016): «A command line tool (and Python library) for archiving Twitter JSON» (en línea) Recuperado de: https://github.com/DocNow/twarc. Último acceso el 8 de septiembre de 2022.
  25. Tandoc Jr, E. C. (2014): «Journalism is twerking? How web analytics is changing the process of gatekeeping». New Media & Society, 16(4): 559-575. DOI: 10.1177/1461444814530541
  26. Vu, H. T. (2014): «The online audience as gatekeeper: The influence of reader metrics on news editorial selection». Journalism, 15(8): 1094-1110. DOI: 10.1177/1464884913504259
  27. Zamith, R. (2018): «Quantified audiences in news production: A synthesis and research agenda». Digital Journalism, 6(4): 418-435. DOI: 10.1080/21670811.2018.1444999